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ABSTRACT

The research program in seismic exploration in progress in the
Mathematics Department of the University of Denver is described. This
work is identified here by the term velocity inversion. The mathematical
formulations employed by this group are outlined and results of computer
implementation are depicted. Ongoing research is also presented.
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1. Introd]ction

The purpose of this paper is to describe the research efforts of a

group of people in the Mathematics Department at the University of Denver

and related work, elsewhere. The researchers in the group include the

authors, Professor F. G. Hagin of the Mathematics Department, former gra-

duate students, Drs. R. D. Mager. J. A. Armstrong and S. H. Gray, present

graduate student, M. Lahlou and programmer, W. S. Grady. The objective

of this research is to study the problem of the mapping of the interior

of the earth as an inverse problem and to develop methods which yield

increasingly more accurate solutions of that inverse problem. This

presentation was originally prepared as a lecture which was presented at

the Seismic Inversion Workshop at the 50th Annual International Meeting

of the SEG, Houston, November 20, 1980.

The methods we use are classical, employing perturbation techniques,

transform methods, asymptotic and numerical analysis to arrive at com-

puter algorithms which produce a mapping of the interior of the earth.

We shall describe, here, what we mean by inversion in contrast to

mixration. Our mathematical development and subsequent computer imple-

mentation will be presented, followed by a brief discussion of present

and ongoing research.

Ii
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2. The Inverse Problem of Seismic Exploration

The mapping of the interior of the earth from observations on the

surface of the earth is an inverse problem. For this type of inverse

pioblem, the propagation of signals - acoustic, elastic or electromag-

netic - into the earth is modelled by the appropriate equation or system

of equations in which one or more functions characterizing the interior

of the earth (soundspeed, elastic or electromagnetic coefficients) are

left free. One or more signals consistent with the model are introduced

at or near the surface of the earth in a region of interest. The 'irre-

gularities' of the interior of the earth produce a 'response' to those

signals. Observations of those responses are recorded.

The objective of the inverse problem is to determine the free coef-

ficients in the modelling equations from knowledge of the input signal(s)

and the response(s) and thereby 'map' the interior of the earth.

This type of inverse problem is known by the fuller title, inverse

scattering problem. This contrasts with the more familiar direct

scattering problem in which the parameters of the equation(s) are known

and the objective is to determine the response to the given signal

The mapping of the interior of the earth from observations of the

response to a single acoustic source is an inverse problem for the acous-

tic wave equation. Here, implicit in the model - acoustic wave equation

- is a definition of the word 'mapping'. At most, one could hope to
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characterizoi the interior of the earth from this model in terms of its

density and compressibility or its density and acoustic propagation

speed.

Under the assumption of constant density, an approximate solution to

this inverse problem for the velocity was demonstrated by Claerbout

[1971]. Approximate solutions for both velocity and density in a hor-

izontally stratified earth have been presented by Raz [1981c] and Clayton

ald Stolt [1980].

The mapping of the interior of the earth from 'local' observations

or the surface of the responses to an 'ensemble' of acoustic sources is

another type of inverse problem. Each experiment in the ensemble is per-

formed separately and the 'locality' of the observations is limited by

the extent of the receiver array.

This is the inverse problem which has dominated exploration geophy-

sics it, the recent past. Below, this problem will be referred to by the

title, the inverse problem of seismic exploration, although we ack-

nowledge the introduction into the repertoire of exploration geophysics

of other inverse problems - static and dynamic, acoustic, elastic and

electromagnetic.

The seismic exploration problem has recently been treated most suc-

cessfully by wave equation migration [Claerbout and Doherty, 1972]. This

technique treats the inverse problem of seismic exploration as a direct

problem in reversed time for the acoustic wave equation with 'halved'

propagation speed.

4
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The following features of wave equation migration are to be noted:

I. is

i. a high frequency technique,

ii. emphastizing phase, but

iii. neglecting amplitude.

Migration

i. locates reflectors, but

ii. does not estimate 'reflection strength'.

Our approach to the inverse problem of seismic exploration is iden-

tified by the name, velocity inversion (See, Cohen and Bleistein, 1977,

1979a]. In this approach, the inverse problem is modelled by one or more

non-linear integral equations deduced from the direct scattering model.

The integral equation(s) are linearized by perturbation methods (or, as

the physicists would prefer, by a Born-like approximation). The unknowns

in these equations are the free parameters of the model equations. Thus,

inversion of the integral equation leads directly to a solution of the

inverse problem.
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...5m m



Velocity inversion, as implemented on seismic data, is

i. a high frequency technique,

ii. preserving phase and

iii. preserving amplitude.

Therefore, velocity inversion

i. locates reflectors and

ii. estimates reflection strength.

The accuracy of the estimate of reflection strength is limited by

the accuracy of the perturbation approximation. Thus, much current

research by us and by others, notably Coen [1980], is focused on updating

the perturbation, or correcting it, or perturbing about more accurate

reference signals.

It should be further noted that high frequency implementation is not

a constraint of the basic method, but rather an acknowledgement of the

realities of seismic data. For the length scales, velocities and curva-

tures of interest, 4 Hz is, indeed, a 'high frequency'. For example, for

a length scale, L=1000 ft., a velocity of v-5000 ft/sec, and a frequency,

f=4 Hz, the relevant parameter,

S1
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2nffL/v=5,

is Ilargo'.

fFinally, we remark that estimation of velocity from information

about reflection strength requires a further assumption about the rela-

tion between density and compressibility. We assume a constant density

medium.

I
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3. Implementation of Velocity Inversion

For analysis of the inverse problem of seismic exploration by velo-

city inversion, the propagation of acoustic waves in the interior of the

earth is modelled by the homogeneous acoustic wave equation,

V2U - 1at, = 0, z > 0, (3.1)

subject to the introduction of appropriate sources on the upper surface

[See, Cohen and Bleistein, 1977, 1979a]. It is assumed that everywhere

on the surface, a 'backscattered response' is observed. That is, the

upward travelling signal is observed at the source point. This is the

mathematical idealization of an array of CDP stacked responses.

The velocity v is rewritten as

;1 1 (l+M) (3.2)

An integral equation is then derived for a by a standard perturbation

technique. That integral equation is

dz mdx dy a(x,y,z)c-z(x,y,z) dt Ul(t,x,y,z,t,-q,0)Ul(-r-t,t,-q,01x,y,z)

= odt VUt ,lO . O(-) (3.3)

Here UI is the impulse response due to a source at the point (Q,iq,O)
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at time, t=O, in the absence of the perturbation, a. US is the observed

'backscattered' wave at t,j due to the presence of the perturbation, a.

When the reference velocity, c, is assumed to be constant and obser-

vations of the backscattered field are made 'everywhere' on the upper

surface, then this integral equation has the following analytical solu-

tion:

a(x,y,z) = -dkdk, dks dr dt k,(T-vt )

U S (t, ,q,0;{,q,0)exp 2i[k (x-t) +k,(y- )-k.z +iwtI (3.4)

k 2 3kk 2

= c[sign kLk 1 +k1 +k, ]/.

Thus, the solution consists of a multi-fold Fourier transform over

the observations in to and t, followed by a transformation of transform

variables from k,,k2,w , to kl,k 2 ,k,, via the indicated dispersion rela-

tion. This is a full bandwidth solution for the perturbation in velo-

city, a.

This formula is also quite similar to the result of F-K migration

[Stolt, 1978]. Indeed, the methods differ only in the amplitude weight-

ing factor, here deduced by solving exactly an approximate integral equa-

tion for the true perturbation in velocity.

Thus, this solution could be implemented by use of fast Fourier

transform in three variables, followed by an interpolation to obtain the
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data o" the appropriate grid, then followed by the inverse Fourier

transform.

The direct calculation of a in this way does not exploit the partic-

ular properties of the data or of the nature of the solution we seek.

Firstly, as already noted, the data is bandlimited to high frequency.

Thus, the Fourier transform of a, implicit in (3.4) before calculation of

the inverse transform, is bandlimited.

In a series of papers [Bojarski, 1966; Mager and Bleistein, 1978;

Armstrong and Bleistein, 1978; Cohen and Bleistein, 1979b], a theory was

developed to extract information from a high frequency bandlimited

Fourier transform of a piecewise constant function. More precisely, it

is shown in this series of references ho- to locate the discontinuities

of such a function and how to estimate the magnitude of the discontinuity

from the Fourier inversion of the bandlimited data. To obtain this

information, the Fourier data is processed to yield the normal der~vative

to the surface(s) of discontinuity. This derivative is a bandlimited

Dirac delta function, which is readily recognizable. The 'strength' of

the delta function at its peak is in known proportion to the magnitude of

the discontinuity and to the bandwidth.

For the seismic inverse problem, the output of this process is an

array of delta functions which define the 'events' or boundaries between

the layers of the subsurface. From the peak values of the output, the

reflection strength or velocity increments can be calculated.

For the integral in (3.1), the fact that only high frequency data is

10



usually collected can be exploited to reduce the number of integrations

to be performed. With fewer integrations, it is practical to develop an

algorithm which computes the output pointwise. Such a technique has the

advantage that the velocity need not be kept constant for each point of

processing, but can be replaced by a 'local' estimate of the rms velo-

city. Implementation of such a variable reference velocity tends to

place the depth of events of the output more realistically and also

allows diffraction tails 'at depth' to be gathered up more completely.

An example of the latter will be shown below.

It should be noted that (3.4) provides a three dimensional output

under the assumption that a full two dimensional ensemble of observations

is made at the upper surface. More typically in seismic exploration, a

line of data is taken. It is then assumed that the earth has only two

dimensional variation - along that line and vertically. This is

equivalent to assuming y-independence of a and TI-independence of the

observations. This results in the elimination of the q and k, integra-

tions in (3.4) and also the elimination of one factor of n. It should be

noted that this is the result of assuming three dimensional propagation

from a point source over an earth with two dimensional velocity varia-

tion. Thus, the velocity increments are still estimated by the output,

but only to the extent that the model is consistent with reality. This

is in contrast to a completely two dimensional model in which point

sources are equivalent to line sources over the subsurface. In that

case, even if the earth did have only two dimensional variation, the out-

put would not properly estimate velocity increments, because the sources

Id



and the nature of propagation in the three dimensional earth w~as not

modelled correctly.
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4.Implementation of Velocity Inversion on Synthetic Data

A number of synthetic data examples for the velocity inversion for-

malism were presented in [Cohen and Bleistein, 1979a]. Those examples

confirmed the validity of the computer implementation of our method on

data sets generated from simple reflectors and on one example with multi-

pie reflectors, including an interior lens shaped region. Furthermore,

it was seen from those examples that the perturbation method produced

adequate estimates of velocity increments which were 20% of the reference

velocity.

Here, four synthetic examples will be presented. The first two of

these are examples with two dimensional variation, the last two are exam-

ples with three dimensional variation.

Figure 1 is the synthetic timelog for the impulse response from a

two dimensional buried focus. The data was generated from a Kirchhoff

representation of the upward scattered wave. The doublet-like behavior

of the response on the lower curve of the lbowtie' can be seen. Indeed,

the objective of this example was to test that velocity inversion unrav-

els this doublet.

The output of our algorithm is shown in Figure 2. The location of

the surface, as defined at each point by the peak of the bandlimited

delta function, is virtually exact. For this example, the velocity in

the upper medium was taken to be 5000 ft/sec and the increment at the

13
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interface was taken to be 250 ft/sec. Typical estimates of the velocity

increment taken from the output were 248 ft/sec to 251 ft/sec.

The timelog for the second example is shown in Figure 3. Here, the

reflector has a sharp discontinuity and the objective was to test how

well the method 'gathered up' the diffraction tail.

The output of our method is shown in Figure 4. Again, the location

of the reflector is exact. The velocity and the velocity increment of

the synthetic were as in the previous example. Away from the edge of the

reflector, the estimates of velocity increment were as in the previous

example. At the edge of the reflector, the estimate decreased to half

its true value, as predicted by theory. One trace further to the left,

it reduced to one tenth of the value on the reflector, then to one one-

hundredth and then was lost in the noise. Thus, the edge was adequately

reproduced, along with an estimate of velocity increment.

The final two examples serve as a test of the computer program

developed to perform three dimensional velocity inversion. The input was

analytically generated data for the reflection from a planar reflector

and a spherical reflector. The output is shown in Figure 5 (for the

planar reflector) and in Figure 6 (for the spherical reflector).

For reasons of economy, the observation grid was coarsened and an

attendant coarsening of the output was observed. Nonetheless, the

results do provide a test of the basic theory as implemented by our com-

puter program for three dimensional velocity inversion.

14
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5. Implementation of Velocity Inversion on Real Data

Here, we show the results of applying velocity inversion to real

data sets. Figure 7 shows the timelog of a data set provided to us by

Paul Stoffa of Lamont Observatory. A discussion of this data set as

analyzed by wave equation migration can be found in [Berron, etal.,

19781. In Figure 8, the results of applying velocity inversion to this

data set are depicted. The figure is normalized by the peak amplitude of

the data set with no scaling of the output. Consequently, the picture is

completely dominated by the strong reflection at the ocean bottom. In

Figure 9, only the part of the depth section below 3000 meters is plot-

ted. Here, a second reflector, sloping downward to the right, is visi-

ble. This is the reflector R4 in the above cited reference.

The data provided, here, was not true amplitude data. Furthermore,

it is relative amplitude data only to the extent that relative amplitude

is preserved by stacking and other preprocessing. Thus, the amplitude of

the output is relative amplitude data, subject to the same caveat.

Nonetheless, treating it as accurate relative amplitude data, the output

can be normalized with respect to the assumed known response at the ocean

bottom. It was assumed that the velocity incremented at the ocean bottom

from 1500 meters to 3000 meters. On this basis, estimates were made of

the velocity change at the reflector below -1625 meters. The estimates

varied from -150 m/sec to -250 m/sec.

As a basis of partial comparison of the results of velocity

I
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inversion and migration, an electrostatic plot of the type used by

Lamont, was generated for us by Stoffa. That result is shown along with

Stoffa's migrated section, in Figure 10. The similarity of the output is

quite apparent. That is, inversion provides as qualitatively 'clean' a

depiction of the depth section, while also providing estimates of velo-

city changes.

Figures 11 and 12 are the left and right halves, respectively, of a

timelog provided to us by Marathon Oil Company. Figures 13 and 14 depict

$ the results of velocity inversion. In Figure 13, a long diffraction tail

from the edge of the reflector in Figure 14 can be seen. The reason that

this diffraction tail 'survived' inversion became apparent in our discus-

sions with the geophysical research group at Marathon. The constant

reference velocity used in this first 'pass' at the data was 5000 ft/sec.

While this was a good estimate near the surface, 8000 ft/sec was a better

estimate at the depth of the discontinuous reflector. Figures 15 and 16

depict a reprocessing of the data below 4900 ft. at this corrected speed.

Now, it can be seen that the major diffraction tail has been 'gathered

up'. There is, unfortunately, now an 'overmigration' phenomenon apparent

with respect to other reflectors at lower depth. A full analysis of this

data would require a number of different reference velocities in dif-

ferent regions. We did not have the resources to carry this out. How-

ever, the output presented does demonstrate the practicality of using

different reference velocities at different depths.

It should be noted that in this 'atter processing step at the now

velocity, it was not necessary to reprocess the portion of the section

I
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above 4900 ft, but only to process the data in the region of interest.

This would be less practical in a multi-fold Fourier inversion, since

each separate reference velocity would require a different interpolation

grid when transforming from kl,k,,w, to kl,k,,k,.

While this extension will help clean up diffraction tails, it will

not correct for refractions, since the closed form solution assumes an

incident wave U I which propagates on straight rays.

The number of data points and processing times for this output are

listed in the table below:

Processing Time in seconds on a CDC Cyber 76

# of input # of output Preprocess Process Total

Source data points data points time(sec) time(secs) time

Lamont 480,000 60,000 31 201 232

Marathon 700,000 230,000 117 583 700

517



6. Recent Developments and Future Research

The objectives of recent research efforts have been to develop

methods to invert the integral equation (6.2) when the reference speed,

c. is not constant and to more adequately account for the non-linearity

of the underlying inverse problem.

6.1 Higher Order Accuracy in the One-Dimensional Problem

An important line of research leading to higher order accuracy in

the one-dimensional velocity inversion problem was initiated indepen-

dently and nearly simultaneously by Gray [1980] and Raz [1981c]. While

their approach differs, the basic result obtained is nearly identical.

We shall describe Gray's approach. He introduces the travel time as

an independent variable. The resulting equation admits an incident wave

with constant reference speed and a perturbation proportional to the log-

arithmic derivative of the true propagation speed. The integral equation

*for this perturbation reduces to an equation relating its Fourier

transform to the observed backscattered data. Fourier inversion and

exponentiation then produces the velocity as a function of travel time.

Since the true depth is an integral of this velocity with respect to

I travel time, the velocity is given implicitly in terms of depth.

'~ 1 Gray shows that this result has higher order accuracy in the pertur-

bation, ax. Gray and Hagin [1980] have shown that an iteration scheme

U based on this formulation converges even when the velocity has jump

1 18



discontinuities (albeit, not too large), as in a layered earth. In con-

trast, Prosser [1980] has shown that an iteration scheme based on the

previous perturbation technique will converge for sufficiently smooth

velocities. However, in private communications, he has indicated pessi-

mism about demonstrating convergence of that scheme for the layered

medium case, which arises in the seismic exploration problem.

Figure 17 is taken from Gray, Bleistein and Cohen [1980). It demon-

strates the increased accuracy of this method, both in locating the

discontinuities and estimating their magnitude. Figure 18, taken from

lagin (1980] demonstrates the increased accuracy of second iterates in

this method.

Raz [1979, 1981a] has provided some extensions of this work to the

three-dimensional stratified case. He has shown how observations at

offset can be used to invert a tilted stratified earth or could be used

to separate density and compressibility. An alternative, but quite simi-

lar approach, to the latter problem was also presented at the SEG meeting

in Houston by Stolt and Jacobs (19803.

Our research group is presently investigating the extension of this

method to the three dimensional seismic inverse problem.

6.2 A Wave Equation for the Propagation of the Ensemble of Backscattered

Signals

Research on an alternative approach to the three dimensional velo-

city inversion problem has recently been initiated. The objective of

19



this approach is to derive an equation for the propagation of the ensem-

ble of backscattered signals. That equation should be sufficiently accu-

rate to preserve both phase and amplitude of the ensemble. Clearly, this

is the objective of wave equation migration. However, that method is

based on travel time arguments alone and thus accurately produces only

phase information, except at the first reflector. This will be discussed

in further detail, below.

Our method is based on analysis of the Kirchhoff integral represen-

tation of the backscattered impulse response. For a single layer, we

consider the geometrical configuration depicted in Figure 19. By using

geometrical optics approximations in the Kirchhoff integral representa-

tion of the solution, one can derive the following integral representa-

tion for the backscattered wave (See, for example, Cohen and Bleistein

1979b):

(1, ) i R f R exp{2iw/c) dS. (6.1)-- 8nac fs r2

Here, ' is the unit upward normal vector, r is a unit vector from the

surface, S, to the observation point, uS denotes the Fourier time

transform of US and R is the geometrical optics reflection coefficient,

- {c/c 1  - 1 + (.T)8)}1/2
R(x,.) =/ . (6.2)

(. + (c2/c 1
2 - 1 + (6.2)

By applying the wave operator to (6.1) and retaining only terms to

20



two orders in w (i.e., terms multiplied by t2 and w ), the following

partial differential equation can be derived for US

[V (2./c)l-]auS] R (6,3).
OW - c n(n (6.3)

Here, 6 denotes the Dirac delta functionj a denotes normal distance

from the reflector to the observation point. R denotes the 'normal'n

reflection coefficient:

cl - c

R n (6.4)

Boundary data for uS is also prescribed at z=O.

Equation (6.3) has the interpretation that the ensemble of back-

scatters is the response to a source distributed over the reflecting sur-

face. Furthermore, that source is proportional to the reflecting

strength. Thus, equation (6.3) provides a 'quantification' of the

'explosive reflector' model of backscattering and gives the intensity of

the source to leading order in w.

The inverse problem for the location of the reflector and the

reflection strength may now be stated as follows:

Since the 'support' of the delta function is on the scattering
surface, this distance need only be single valued and well defined
near that surface, which it will be for a sufficiently 'well
behaved' surface.

1
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let u. be a solution of (6.3) with unknown source. Given the boun-

dary data for us, find the source.

Unfortunately, inverse source problems are known to have non-unique

sclutions. .t is our belief, however, that in the class of distribu-

tional solutions with uniform strength over a surface, the solution is

unique. However, no proof has been developed, as yet.

This result can also be stated in time domain with an alternative

interpretation. To deduce this result, we introduce the function

OuS
v(x,o) =-i - (6.5)

aw

and its inverse Fourier transform,

V(x,t) = tus(x,t). (6.6)

22
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This function is a solution of the following initial-boundary value

problem deduced from the frequency domain problem:

v)V - = 0; 
(6.7)

V(RO) =-0-___IE(A,0) = 0, (6.8)
47r at

subject to an appropriate boundary condition on the surface z=O.

The inverse problem for the reflector and the reflection strength

may now be stated as follows:

Let V be a solution of the wave equation with propagation speed c/2.

Given the observations at the upper surface, z=0, for all time and

given the second initial condition in (6.8), determine the initial

value of V.

This is exactly the problem which is solved by wave equation migra-

tion. We conclude, therefore, that at the 'first reflector', wave equa-

tion migration not only locates the reflector but also, for true ampli-

tude data, accrately estimates the reflection strength.

It is possible to obtain an integral representation of a solution to

this problem, namely,

23



V(1,O) zdxdy odt V(x,y,Ot) kG(x,y,O,,t) (6.9)

Here, G is the half space Green's function for the wave equation with

source point, (x,y,O) and observation point, (.) and zero boundary value

at z=O.

In order to generalize this result to a layered earth, it is neces-

sary to analyze the backscattered field from a layer below the first, We

start from the same Kirchhoff integral representation of uS . However,

the function,

[4rr]-lexptiwr/c],

whose square appears in the integral in (6.1), must now be replaced by

the Green's function for an arbitrary medium. This can be simplified

somewhat if we are willing to accept only the primary downward propagat-

ing part of the Green's function and then further content ourselves with

a characterization of that function which has accurate phase and leading

order amplitude, only. Thus, each reflector will be treated as if it

were the only reflector; i.e., multiple reflections are neglected and, as

above, the representation reproduces the phase and amplitude to leading

order in w.

This asymptotic Green's function has the form,

j 24



G ~ A expfiwf), (6.10)

where p and A are solutions of the eikonal equation and transport equa-

tion, respectively,

(VO) 2 
= c-2 2VO.VA + AV20 = 0. (6.11)

Furthermore, in order that this be asymptotically the Green's function,

it is required that A behave as [4nr]-I when r, the distance between

source and observation point, approaches zero and that 9 be zero in that

limit. In this case, in analogy with (6.1), the backscattered field has

the integral representation,

US(xW) 2iwjR E. A2 exp(2iwl) dS. (6.12)

Here, the reflection coefficient is as in (6.2) except that 7 must be

replaced by cVP.

Applying the wave operator to (6.12) yields the following equation:

aw jj 2n a n)

+ 
4iJS R(F.Vt) A Vt0-(AVt) exp(2iwo] dS. (6.13)

jWere the second line absent from this equation, then the downward propa-
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gation of the ensemble of backscatters from any layer would be exactly

the same as those from the first layer. In this case, wave equation

migration would produce true amplitude at each reflector and would then,

indeed, be inversion. The second line in this equation therefore

represents the extent to which downward propagation according to the wave

equation with speed (c/2) of the ensemble of backscattered signals devi-

ates from producing a 'true' ensemble of backscattered signals 'at

depth'. It should be noted that this second line has a multiplier of W

(rather than w3 ) and thus asymptotically affects the leading order ampli-

tude and not the phase of the downward continued ensemble. Thus,

neglecting this term will cause errors in amplitude alone and not in

phase. This is consistent with the empirical results demonstrating that

wave equation migration (i.e., solving the equation represented by the

first line only, in (6.13)) locates reflectors accurately.

Research on this full propagation equation is now being carried out

by our research group.
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2. Conclusions

A summary of a research program on a class of methods collectively

referred to as velocity inversion has been presented. The mathematical

formulation and computer implementation have been described nd new and

incomplete research in progress has been discussed.

An inspection of the program for the 47th Annual International Meet-

ing of the SEG in Houston -ii. 1976 will reveal a paucity of papers on the

subject of inversion. In contrast, the 50th Annual Meeting in 1980 had

three sessions and one workshop on inversion. Having presented one of

the papers on inversion in that 47th Meeting, we view this as a favorable

and gratifying trend.
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FIGURE CAPTIONS

Fig. 1 Synthetic timelog from a two dimensional buried focus. Hor-
izontal spacing, 100 ft., bandwidth, 12-36 hz. Doublet
behavior on lower half of bowtie is evident.

Fig. 2 Output of the velocity inversion algorithm for the line of data
of Fig. 1. Horizontal spacing between traces, 100 ft. Doublet
in timelog has been replaced by impulse on the output section.

Fig. 3 Synthetic timelog for a half-plane reflector. Horizontal spac-
ing, 100 ft.1 bandwidth, 12-36 hz. Diffraction tail to left of
reflector is evident.

Fig. 4 The output of the velocity inversion algorithm for the dataset
of Fig. 3. The diffraction tail has been 'gathered' by the
algorithm.

Fig. 5 Output of the three dimensional velocity inversion algorithm
for a planar array of synthetic data over a tilted planar
reflector. Horizontal spacing is 100 ft. in each transverse
direction.

Fig. 6 Output of the three dimensional velocity inversion algorithm
for a planar array of synthetic data over a spherical reflec-
tor.

Fig. 7 Timelog of a dataset gathered by Lamont-Doherty Observatory
over the cazt pacific rise. Horizontal spacing, 50 mi
bandwidth, 8-31hz. Electrostatic plot provided by Paul Stoffa.

Fig. 8 Output of the two dimensional velocity inversion algorithm
applied to the dataset of Fig. 7.

Fig. 9 Replotting of the section of Fig. 8 below 3000m.

Fig. 10 Electrostatic plot of output of Fig. 8 and electrostatic plot
of Stoffa's wave equation migration algorithm applied to the
same dataset.

Fig. 11 Left half of timelog of a dataset provided by Marathon Oil

Company. Horizontal spacing, 82 ft., bandwidth, 5-37hz.

Fig. 12 Right half of dataset connected to left half in Fig. 10.

Fig. 13 Left half output of velocity inversion algorithm. Note long
diffraction tail below 4900 ft.
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Fig. 14 Right half output of velocity inversion algorithm adjacent to

left half of Fig. 12.

Fig. 15 Left half output of velocity inversion below 4900 ft. with new

reference velocity, 9000ft/sec.

Fig. 16 Right half output of velocity inversion below 4900 ft. with

new reference velocity, 9000 ft/sec.

Fig. 17 Comparison of first and second order one-dimensional velocity

inversion algorithm. Both amplitude and phase (location of

second discontinuity) are more accurate with second order
method.

Fig. 18 Comparison of first and second iterates of Gray's second order
method.

Fig. 19 The geometry for analysis of the propagation of an ensemble of

backscatters from a single layer.

j 32



SECONDS

1.2 1.6 2.0

LL

-Jim



KILOFEET

3 456

CNN

IL LU

00D

E 0
133- OU-



KILOFEET

0 1

0 0

z ()(j " ' 'I," 1 .Z

w 0

. .f

I

I FIGURE 3

I
lowob



IKILOFEET

0 0

wm
w -
IL-

I

z

wm

FIGURE 4



0
LL-



10

D

UL-



3.5

.K .

~~l "I'*'

50 411

4.5 i
* ;m 

4 I,.

pn~~r 4- " IR

-Sw*' aVS

~ 'r,

FIUR7

I I _ _ _ _ __5.0



21.00 '1.00 41.00

C,

Ln~

C-j

______ LU u

0D 0

cD

CE~
GED

LLU

(N

~cn
GE
w L

21.00 31.00 41.00

I



3.0.00 3'.000

o _j

U) u-) 
LAM_

I- ___ _____

___uJ

300 il. 0 0 00

gill&._ 
_ L



IF--q

-~1 rAZl4A or L

it 
I.

Ilk"t~AU ?~

S'A

Ni ',,.s .A 4-A.

4 AO

FIGUR 10~~A -4

1) ~Mai



. .0 .0 5.

___________ -VZ77~7. _________________________.

I-m



I

_________________

F __

___ CN

___ ________ LU

___ __ _____ 0
_________ _______ U-

___ ____________ ______ ~-r -'~x'-~-.

F '-, ~-v- C,

ri

cn ________ __________ ___ C,m
z

(N C,

_______ C, ci:
L.~ T

~C I

Q

I ~zZI+z:

j.J 0 ~) ii



- C

:2z_ U-

C

L~nl c)

2;D

f I Lii

t o

Iu
IL

adi

-s-. ~ -- -'~amea~C



0D 1 4900 7 30 0 97 00

Lfl

Ci

C\1 - - _ _ _

C'\J

_______U-

CD
CD

(-'NJ

10 cl

0 0 2E09~00 7300 9c



4 9PC 7 3[b i7 F,, I'1

cc

CD>

ci?__ __

cc,

K i _ __ ___6_ _

K ___

CD ___

ci~~( __ _ _ __ _ _ _

____ ____ ___ ____ ___ U.

_ _ 0 VC



K m-

m\J =5z

C2 _ _ _ _

LT\

~ _ _____ __

- ~- -140

$ '- -____ _____

a- L)r
i~ ______

rl __D______

4900_7_n_9_7_____ P 12100



Ic

FIRST ORDER METHOD A

SECOND ORDER METHOD o
TRUE VELOCITY C/C (0) o

0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20

FIGURE 17

.EEL-



C3

00020.4 0.6 0.8 1.0
x

FIGURE 18



I
ox

r

I
I FIGURE 19

I



SECURITY CLASSI' t, ION OF THIS PAGE (Whetn Deco Entered) __________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

R"EliOT NUMaEL.2 GOVT ACCESSION NO.,S. RECIPIENT'S CATALOG NUMBER

M'.S-R-8 11t0 N 1q ,
4,."_Y (and S.betla) 5. JTYpE OF R9PRRT & PERIOD COVERED

the1 VClocity hivers ion Prob lem:'r-ot'lcnil

Status, New D irect ions -

S. PERF,01111ING ORG. REPORT NUMBER

_2 UI O~s . CN CTOR GRANT NUMUER(a)

Norman/Bl leiste in mq Jack K 01 1N0014-76-C-0039-
/ ./CiienNOW 4-76-C-0079~

9. PERFORMING ORGANIZATION NAME AND ADDRESS ' IQ,-'ROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

University of Denver ..

Mathiemat ics & Corn uter Scilence Department N 4-3/-07
Dc'nver , Colorad 90 208 _______________________

II. CONTROLLING OFFICE NAME AND ADDRESS I240011- Y

Office of Naval ResearchC,11'Rw 8
800 North Quincy Street t3 NUMBER OF PAGES

Arl ington, Virginia 22217 ________________

14 -MONITORING AGENCY NAME &ADDRIESSII different from, Controlling Office) 1S. SECURITY CLASS. (of this report)

U- n cla ss if ie d

- ./-.15aS. DECL ASSI FI CATION/OOWN GRADING
SCHEDULE

I6. DISTRIBUTION STATEMENT (of this Report)

Tb is document has been a pp roved IOr 1)(11 1 o . and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It dItterent from, Report)

I8 SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on re rre aide it necessary and identify by block number)

velocity inversion gohsc

wave equat ion migrat ion ye 1 Ccit V pro file

seismic

20. ABSTRACT (Continue on reasr.. side It necessary and identify by block numtber)

SHie research program in seismic exploration in progress ' in the Mathematics
D~epartment of the University of Denver is descrihed. T[his work is identified
le re by the term velocity inversion. The matlirat ica] formu lat ions employed
ly tliis grou-p are out lined and results of compu~ter impl ement at ion are
dlepicted. Ongoing research is also presented.

DD I 'jOANI 1473 E0 ITION OF 1 NOV, SB IS OBSOLETE 

re__________________________________

SECURITY CLASSIFICATION Of THIS P on~rPW Data EnITed)

L 2 i p Af




